Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology

نویسندگان

  • Shi-Bo Wang
  • Jian-Ying Feng
  • Wen-Long Ren
  • Bo Huang
  • Ling Zhou
  • Yang-Jun Wen
  • Jin Zhang
  • Jim M. Dunwell
  • Shizhong Xu
  • Yuan-Ming Zhang
چکیده

Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology

Composite interval mapping (CIM) is the most widely-used method in linkage analysis. Its main feature is the ability to control genomic background effects via inclusion of co-factors in its genetic model. However, the result often depends on how the co-factors are selected, especially for small-effect and linked quantitative trait loci (QTL). To address this issue, here we proposed a new method...

متن کامل

Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies

Genome-wide association study (GWAS) entails examining a large number of single nucleotide polymorphisms (SNPs) in a limited sample with hundreds of individuals, implying a variable selection problem in the high dimensional dataset. Although many single-locus GWAS approaches under polygenic background and population structure controls have been widely used, some significant loci fail to be dete...

متن کامل

Methodological implementation of mixed linear models in multi-locus genome-wide association studies

The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance ...

متن کامل

Unveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice

Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...

متن کامل

Improving the Power of GWAS and Avoiding Confounding from Population Stratification with PC-Select

Using a reduced subset of SNPs in a linear mixed model can improve power for genome-wide association studies, yet this can result in insufficient correction for population stratification. We propose a hybrid approach using principal components that does not inflate statistics in the presence of population stratification and improves power over standard linear mixed models.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016